CONVECTIVE MOTION IN A CLOSED VERTICAL
CAVITY WITH PERMEABLE LATERAL WALLS
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Velocity and temperature distributions are obtained for 0 < Ra = 2-10° and various rates of
transverse flow in a vertical cavity with permeable lateral walls,

The existing analytical studies of thermal convection in a closed vertical cavity have been carried out
for the case of impermeable lateral walls [1-7].

We consider plane convective motion of a viscous incompressible fluid in a closed vertical cavity with
permeable lateral walls, an aspect ratio I = H/L and a constant lateral-wall temperature (Fig. 1).

We use the temperature at the vertical wall at x = 0 as a zero point and the temperature is 8y at the
wall at x = L. The temperature varies linearly along the lower base at y = 0 and along the upper base at
y = H. Gravity is directed vertically downwards,

The vertical surfaces of the cavity are assumed to be permeable. Uniform injection of the fluid at a
constant rate along the y axis occurs through the surface at x = 0 and uniform suction at the same rate takes
place through the surface at x = L.

The equations of motion for the stream function ¢ and the temperature function 4, written in dimen-
sionless form, are
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In Egs. (1) and (2), the following scale factors are assumed for the variables: distance, cavity width .
L; time, 1L%/a; temperature, 0y stream function, a. The dimensionless criteria appearing in the equa-
tions are the Rayleigh and Prandtl numbers; ’
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The dimensionless velocity of the fluid is associated with the stream function through the relations
v,=-2%_ y %

oy = Y dx

and the Poisson equation for the vorticity takes the form

We consider a stationary solution of the equation system (1)-(3), i.e., a solution for which the time
derivatives of the functions ¢ and 9 are zero. To obtain a stationary solution, the limiting method is used,
i.e., alimiting solution of the nonstationary system (1)~(3) is sought which is independent of the time t to a
given accuracy.
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¢ Further, in order to make the calculations with respect to each of Eqgs.
(1)-(3) identical, the term 8y/8t is added to Eq. (3) and this equation is re-
- m - placed by
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- ™ Thus the initial system (1)-(2) is replaced by
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In the boundary conditions, the constant C is the Peclet number, which defines the intensity of the trans-
verse flow: .
v,L

Pe == ——,
a

The method of finite differences is used to obtain a numerical solution of the system (4)-(6) under the
boundary conditions (7).
In the region of integration, we introduce a‘ space—time grié with the mesh points
goe=ih ({(==0,1,2, ..., 0,
g;=Jjs (=012, ..., m,
L=kt (£=0,1,2 ..,
where h = 1/h is the spacing along the x axis; s = 1/m is the spacing along the y axis; 7 is the time step.
We write Eqs. (4)-(6) in finite-difference form by replacing all‘ differential expressions by finite-
difference relations: '
O = ot 7 [ b — O+ Ak

1
Pr 4hs

(0% 41— W) (@b — @hr) — @ —¥hon) @ — oh) ]} : (8)

| 1 .
ot =0f,+1 {Aeliz,j ~ s [O9F 1 — W) (OF4r,; — 68E—1.) (?l”ia+l’i — 1) O — 9?.,'—1)]} ’ (9)

?:',71 = \P?,f +7 ((Pliz,i + A(P?,j)' (10)

In Egs. (8)-(10), the Laplacians A<pgl{’j and Aeli{’j are approximated by
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/-\ . r In finite-difference form, Eq. (3) becomes
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@ The boundary conditions (7) take the form
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A stationary solution of the system (8)-(10) under the boundary conditions
w (11)-(12) is realized through the following iterative procedure. Values of § and
\iﬂ 2 § are assigned at boundary mesh points on the basis of the conditions (12). We
2 " further assume ¢, ¥, and 9 are zero at all interior mesh points. On the basis
"/, b of these values, values of the function ¢ at the boundary mesh points are cal-
920 20 culated from Eqs. (11). The resultant system of values for ¥, 6, and ¢ at all
Fig. 2. Streamlines the mesh points (except the vertices of the region) is taken as the zeroth itera-
in a cavity for Ra tion. The iterative step involves the calculation of the quantities yK*, K™, and
= 6.8-10%, H/L=6.6; oK% 5t all the internal mesh points from the values of ¢, 8, and ¢ by means of
a) Pe = 0; b) Pe =2, Eqgs. (8)-(10). Following this, ¢k+1 at the boundary mesh points is calculated

from Eqgs. (11). This iterative procedure is repeated until the conditions

O — ¢y <e, 18— 0 <e, WU <,
are satisfied in two successive iterations, where ¢ is the required degree of accuracy of the solution.

The time step was selected on the basis of the convergence conditions for the method. "The main cal-
culations were carried out on a 21 x 21 grid with 7 = 1/4000 and € = 0.001. To check the accuracy of the
calculations, a number of versions were calculated for 21 x 41 and 21 X 101 meshes to third order accuracy.
The iterative procedure continued to be convergent with the first three numbers after the decimal point re-
maining unchanged but the number of iterations rose to 2000.

The quality of the difference mode was checked by the behavior of the deviation in each iterative step.
The computation was carried out until the deviation became less than & = 0.000976. A stationary solution
was realized for versions in which the deviation fell monotonically. For Ra > 2-10% the behavior of the
deviation changed markedly and its value began to oscillate, In this case, the values of the functions # and
6§ in the wall regions varied continuously. In all probability, such behavior of the functions ¢ and 9 was con-
nected with the development of small-scale pulsed motions in the wall region and the production of a sta-
tionary solution became impossible in principle.

All the calculations were performed on the Razdan computer.

Stationary solutions were obtained for the following parameter values, which define flow and heat
transport: Ra = 5-10% 10%, 5-10%, 6.8-10% 105 and2-10% Pe=0.1, 2, 3, and 5; H/L=0.5, 1, 2, 4,
6.8, and 10; Pr =1,

The results presented were obtained for the case of injection into the cold wall and suction from the
heated wall, A number of calculations were performed for the opposite transverse flow direction (injec-
tion into the heated wall and suction from the cold wall). Calculations for both cases showed that a dis-
placement of the velocity and temperature fields in the cavity from their positions for Pe = 0 in the direc-
tion of the wall to which suction was applied occurred under the influence of the transverse flow. Fur-
thermore, injection (suction) through the heated wall had the same effect on flow and heat transfer in the
wall region as injection (suction) through the cold wall.
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Fig. 3. Dimensionless temperature in the central vertical section of the

cavity: 1) Pe=0; 2)1; 3)2; 4) 3.

Fig. 4. Effect of wall permeability on heat transfer in a cavity. Points
are obtained from the present numerical calculations.

From the calculations of the velocity and temperature fields, a systematic shift of the flow and heat-
transfer modes was observed depending on the Rayleigh number and the ratio of the sides, and the effect of
wall permeability on the flow and heat-transfer structure was also determined.

The results of the calculations for the absence of transverse flow, Pe = 0, is not discussed in detail
because this problem was solved previously @, 6, 7].

Wwith transverse flow present, a nonzero transverse component of the velocity appears at the lateral
walls of the cavity. In this case, convective motion in the cavity results not only from gravitational forces
but also from transverse flow at constant velocity. Because of very low velocities in the boundary layer
during natural convection, the transverse perturbations have a rather strong influence on flow and heat
transfer. The effect of transverse flow on the flow structure for Ra = 6.8+ 10 is shown in Fig. 2b. The
streamlines obtained give a representation of the nature of the overall motion arising as the result of the
superposition of transverse flow on free convective motion. It is clear from the figure that transverse
flow reduces the intensity of circulatory motion and disturbs the symmetry of the flow; in this case, the
streamlines are displaced somewhat toward the wall where suction is applied.

Analysis of the flow fields obtained showed that the degree of deformation of free convective motion
under the influence of a transverse flow (for fixed velocity of the transverse flow) depends on the Rayleigh
number.

For weak convection the velocities are low, which leads to strong displacement of the main flow by
the transverse flow. In this case, the slow movement of gas along closed trajectories is preserved only in
the upper half of the cavity.

As the Rayleigh number increases, the velocity of free motion rises and the effect of the transverse
flow drops. For large Rayleigh numbers and transverse flow, circulatory motion continues to be maintained
over the greater portion of the cavity (Fig. 2b).

Analysis of the results of the numerical computation made it possible to establish that with an in-
crease in the intensity of transverse flow, the velocity profile at the cold wall (injection) becomes less
complete, the velocity maximum is reduced, and its coordinate is moved away from the wall. At the heated
wall (suction), the velocity profile becomes more complete, its maximum is also reduced, and it is dis-
placed toward the wall.

Injection lowers the temperature gradient at the wall, which leads to weakening of heat transfer.
Suction has the opposite effect — the gradient at the wall is increased leading to balancing and intensifica-
tion of heat transfer, _ ’

Figure 3 shows the variation of the dimensionless temperature in the central vertical section of the
cavity under the influence of transverse flow with Ra = 6.8-10%, Depending on direction, the transverse
flow reducesor increasesthe temperature in the central vertical section, The deviation of this tempera-
ture from the initidl value for Pe = 0 increases as the velocity of the transverse flow increases.
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The total thermal flux (per unit length along the y axis) is determined by the distribution of the local
values and is

H
Q=— ((ﬂ.) dy. (13)
J\ 0x /o
0
The dimensionless Nusseltnumber 'normalized to the width of the cavity is
H/L
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The achievement of thermal balance (Qy-7, = Qy—o) Was checked in the stationary mode with trans-
verse flow absent. The deviation in the total balance was no more than 3% for a 21 X 21 mesh,

With transverse flow present, the equation of thermal balance written in dimensionless form is
Nuy), ., + (Nup),_, + Pe = 0. (15)

The amount of influence of transverse flow on heat transfer through the cavity in accordance with the
results of the analysis of the numerical computation and from a comparison with experiment can be taken
into account by the dimensionless permeability parameter 7 = Pe A/A, which characterizes the ratio be-
tween the amount of heat transported by the transverse flow and the amount of heat transferred by the
equivalent thermal conductivity.

The variation of heat flow through a cavity associated with the injection process in the Ra and Pe
range covered is approximated by
Nu, 1

Nu — expy—1 (16)

Curves of the relation (16) are shown in Fig. 4.

The dimensionless temperature in the central vertical section of the cavity including the effect of
" transverse flow is given by

o Y
8, = (1—0.29n) (0,25 +05 7) . an

When 7 — 0, the indeterminacy in Eq. (16) can be removed by use of L'Hopital's rule. After simple
transformations, Eq. (16) transforms into the usual formula for the calculation of heat transfer through a
vertical layer with impermeable lateral walls.

NOTATION

X is the longitudinal coordinate;

y is the transverse coordinate; .

Vg Vy are the projections of the velocity on the x and y axes;

T is the temperature;

8 = (T—=Ty/ (T,—Ty) is the dimensionless temperature of the layer;

v, A oa B, are the kinematic viscosity, the thermal conductivity, the ther-
mal diffusivity, the volume expansion, and the heat exchange,
respectively;

g is the acceleration due to gravity;

H, L are the height and width of the cavity;

A ' is the equivalent thermal conductivity;

7/ is the dimensionless flow function;

t is the time;

Ra = gBoy,L%/wm, Pr = v/a, Pe =vyL/v  are the Reyleigh, Prandtl, and Peclet numbers;

Q is the total heat flux per unit length along the y axis;

Nuyp, = QL/A6y, is the Nusselt number;

{=H/L is the dimensionless length;

7 =Pe(M/Ae) is the dimensionless permeability parameter;

Vi is the injection (suction) velocity at the side surfaces surfaces

v of the cavity;
b = T9—T. '
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denotes mean value;
denotes value at central vertical section;
denotes value on impermeable surface.
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